Molecular Pathways Disrupting Polyamine Homeostasis as a Therapeutic Strategy for Neuroblastoma
نویسندگان
چکیده
MYC genes are deregulated in a plurality of human cancers. Through direct and indirect mechanisms, the MYC network regulates the expression of > 15% of the human genome, including both protein-coding and noncoding RNAs. This complexity has complicated efforts to define the principal pathways mediating MYC's oncogenic activity. MYC plays a central role in providing for the bioenergetic and biomass needs of proliferating cells, and polyamines are essential cell constituents supporting many of these functions. The rate-limiting enzyme in polyamine biosynthesis, ODC, is a bona fide MYC target, as are other regulatory enzymes in this pathway. A wealth of data link enhanced polyamine biosynthesis to cancer progression, and polyamine depletion may limit the malignant transformation of preneoplastic lesions. Studies with transgenic cancer models also support the finding that the effect of MYC on tumor initiation and progression can be attenuated through the repression of polyamine production. Highrisk neuroblastomas (an often lethal embryonal tumor in which MYC activation is paramount) deregulate numerous polyamine enzymes to promote the expansion of intracellular polyamine pools. Selective inhibition of key enzymes in this pathway, e.g., using DFMOand/or SAM486, reduces tumorigenesis and synergizeswith chemotherapy to regress tumors in preclinical models. Here, we review the potential clinical application of these and additional polyamine depletion agents to neuroblastoma and other advanced cancers in which MYC is operative. (Clin Cancer Res 2009;15(19):5956–61)
منابع مشابه
Disrupting polyamine homeostasis as a therapeutic strategy for neuroblastoma.
MYC genes are deregulated in a plurality of human cancers. Through direct and indirect mechanisms, the MYC network regulates the expression of > 15% of the human genome, including both protein-coding and noncoding RNAs. This complexity has complicated efforts to define the principal pathways mediating MYC's oncogenic activity. MYC plays a central role in providing for the bioenergetic and bioma...
متن کاملPolyamine pathway inhibition as a novel therapeutic approach to treating neuroblastoma
Polyamines are highly regulated essential cations that are elevated in rapidly proliferating tissues, including diverse cancers. Expression analyses in neuroblastomas suggest that up-regulation of polyamine pro-synthetic enzymes and down-regulation of catabolic enzymes is associated with poor prognosis. Polyamine sufficiency may be required for MYCN oncogenicity in MYCN amplified neuroblastoma,...
متن کاملInhibition of S-adenosylmethionine decarboxylase by inhibitor SAM486A connects polyamine metabolism with p53-Mdm2-Akt/protein kinase B regulation and apoptosis in neuroblastoma.
S-adenosylmethionine decarboxylase (AdoMetDC) is an essential enzyme of polyamine (PA) biosynthesis, and both AdoMetDC and PA levels are often up-regulated in cancer cells. The second-generation inhibitor SAM486A inhibits AdoMetDC enzyme activity and has been evaluated in phase II clinical cancer trials. However, little is known about the mechanism of action and potential use of this therapeuti...
متن کاملODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma.
Neuroblastoma is a frequently lethal childhood tumor in which MYC gene deregulation, commonly as MYCN amplification, portends poor outcome. Identifying the requisite biopathways downstream of MYC may provide therapeutic opportunities. We used transcriptome analyses to show that MYCN-amplified neuroblastomas have coordinately deregulated myriad polyamine enzymes (including ODC1, SRM, SMS, AMD1, ...
متن کاملInvestigation of Stem Cell Aging Throughout the Lifetime and Therapeutic Opportunities
Introduction: Aging is a natural phenomenon that is caused by changes in the cells of the body. Theoretically, aging starts from birth and lasts throughout life. These changes affect the function of the cells. Also, in old tissues, the capacity for homeostasis and tissue repair is decline due to destructive changes in specific tissue stem cells, niche of stem cells and systemic factors that reg...
متن کامل